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Abstract 

We consider pneumatic cylinder tubes that connect valves with actuators. The aim of this work is to obiaun a new 
mathematical model for online control applications. For that purpose, a second-order hyperbolic equation corresponding to 
the model problem is derived. The Laplace transform is used and by this approach a sufficiently simple and applicable model 
is derived. The effect of different mathematical models for the considered problem is also discussed. 

Finally, some validation experiments by real engineering parameters are presented. 
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1. INTRODUCTION AND NOTATIONS 
 

The pneumatic cylinders can propose a better alternative 
to electrical or hydraulic actuators for certain types of 
applications. It could be cited, for example: low cost; clean 
environmentals; easier to work with and so on. 

One of the main problems is to investigate the effect of 
time delay and attenuation due to the connecting tubes. So 
(see [1]), the pressure drop along the tube induces a 
decrease in the air flow through the valve.  

On the other hand, the flow at the outlet will be delayed 
with respect to the one at the inlet by the time increment 
necessary for the acoustic wave. Thus, the problem of the 
pressure losses and time delay in long pneumatic lines has 
to be analyzed. The investigations are based on the 
assumption of fully developed laminar flow through the 
tube (see, e.g. [1,2]). In order to find an expression for the 
mass flow, we also extend our analysis to include wholly 
turbulent flow. 

 
For a cylindrical tube with length tL  we adopt the 
following (standard) notations: 
 

• P  is the pressure along the tube; 
 

• v is the velocity; 
 

• ρ  is the air dencity; 
 

• c denotes the sound speed. 

 
 
 

 
 

Fig. 1: Pneumatic cylinder notations 
 
 

Let also x and t be the tube axis and the time variable, 
respectively (see Fig. 1).  

We denote by R the tube resistance and A is the tube 
cross-sectional area. 
 

In general, considering the control volume V, by 
standard arguments, the mass m is represented by V   m ρ=  
and then the mass flow rate can be expressed as: 
 

( ).V
dt
d  m  m t ρ==  

 
For our case, we introduce the mass flow through the 

tube (one-dimensional) as: 
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v.A  mt ρ=    (1) 
 

2. MAIN RESULTS 
 
It is well-known (see, e.g. [1,3]), that the basic 

equations governing the flow in a circular pneumatic line 
are written as: 
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Using (1), these equations could be easily transformed: 
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Differentiating the first equation of (3) with respect to t 

and the second one with respect of x, the pressure P is 
eliminated. So that, the main system (2) is transformed as 
one equation for the mass flow through the tube: 
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This differential equation is of hyperbolic type. 
 
We put 

t),u(x,e  t)(x,m kt
t =  

 
where u(x,t) is unknown function and k is a parameter. 
 

We choose k in such a way that the resulting equation 
with respect to u(x,t) contains no first derivative term. 
 

We calculate: 
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Then, from (4) it follows: 
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Dividing by the exponential multiplier, we obtain: 
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So, we determine the parameter k: 
 

0,  R 2k =+
ρ

 

or 
ρ2

R k −=  and (4) is transformed in the form: 
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This is a wave equation (one-dimensional). The 

dissipative term u
2
R

2









ρ

 causes that the solution waves 

do not propagate with the same velocity. Obviously, we 
have an asymptotic condition: 0 t)u(x, → , when x goes to 
infinity. 

The boundary condition is: 
 

h(t),  t)u(0, =  
 

where h(t) is a given function. 
 

Knowing the input mass flow (see Figure 1): 
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Our model problem admits also two homogeneous 

initial conditions: 

0.  (x,0)
t
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   (7) 

 
Using the Laplace transform, we get: 

 
t)),L(u(x,  s)(x,u t)u(x, =→  

 
where L is an integral operator and s is the Laplace 
parameter (see, e.g. [4]). 
 

Then .
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Using the initial conditions (7), we obtain 
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the following linear ordinary differential equation: 
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First, let us denote 0
2
R

>= ε
ρ

. Then the general 

solution of (8) is: 
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From the asymptotic property, it follows that ( 0  C 1 > ): 
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Now, we use the expansion (
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zero): 
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Let us emphasize that (s)C  C 11 =  
 

If x = 0, from (6) we have: 
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Using again "first approximation" of the exponential 

function, for the inversion )s,x(u  we obtain: 
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From the delay rule [4], the solution for this boundary-

initial-value problem is: 
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when δ  is the Dirak function and H is the Heaviside unit 

function. Here 
c
x-t  is a retardant argument. 

 
The input wave will rich the end of the tube in a time 

period  
c
L

  t=τ . 
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On the other hand, 
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Finally, if tL  x =  and 
c
L

  t t> , the mass flow at the 

outlet of the tube is: 
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It could be replaced the air density ρ  by the pressure 

and temperature from the equation of state.  
Namely, 

 
T, R  P 0ρ=  

 
where 0R  is the ideal gas constant and T is the temperature. 
 

Equation (9) describes in a simple form the mass flow at 
the tube outlet. 
 

 
 
3. EXPERIMENTAL RESULTS 
 

In order to illustrate the presented mathematical model, 
we performed a simple experiment using a plastic 
cylindrical tube with 8 mm internal diameter and 5 m 
length. The input flow (input function f(t)) was constant.  
 

Fig. 2 shows measured values of input and outlet flow 
in dimensionless form. One can observe that the proposed 
method can effectively approximate the outlet flow as well 
as one can predict the time delay. 
 

Fig. 3 represents the corresponding measured initial and 
outlet pressures for the same tube. 
 

The experimental parameters we have used are: R = 
1.37; ρ  = 1.21 kg/ 3m ; C = 343 m/s. 
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Fig. 2: Tube outlet flow for a constant flow input 
 
 

 
 

Fig. 3: Flow pressure 
 
 
 

4. CONCLUSIONS 
 

In this paper we developed a detailed mathematical 
model for a pneumatic cylinder tube that connected the 
valve with the actuator. The proposed model is sufficiently 
simple, such that it can be used online in control 
applications. 

The formula of the mass flow shows that the flow 
profile at the outlet will be delayed with respect to the one 
at the inlet by the time increment for the wave to travel the 
entire length of the tube. So, we are able to determine the 
effective tube length tL  connected with the time delay. 

Some model validation experiments are presented. 
It is also worth while noting that pneumatic actuator 

systems could be investigated by the method of the Fourier 
analysis (see, e.g. [5]). Here, we propose a new approach to 
the problem.  
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