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Abstract
The subject of this paper is from the field of nonlinear control theory and in particular from the theory of chaotic systems and their synchronization. A novel synchronization scheme between two Van der Pol chaotic systems is proposed by which the two systems become synchronized in a more complex way than the usual one with the identical synchronization. The error functions between the systems’ variables are not zero after synchronization is achieved nor fixed constants but periodic functions. This is achieved by a novel approach to define the control functions. The oscillatory chaotic synchronization can have some advantages in the chaotic communication systems regarding the degree of protection of the information signal.   
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ВЪВЕДЕНИЕ

Един от основните дялове на теорията на хаоса е свързан с решаване на задачи за синхронизация между две или повече хаотични системи [1,2]. Преобладаващата част от публикациите в тази област засягат синтез на хаотични синхронизационни схеми и системи, при които се цели постигане на идентична синхронизация между управляваща и подчинена хаотични системи. Идентичната хаотична синхронизация е класическия тип синхронизация, при която двете хаотични системи извършват идентични и в същото време хаотични движения в пространството на състоянието, т.е. функциите на разсъгласуване между отделните двойки променливи на състоянието на двете системи клонят към нула при успешно постигната синхронизация.
Проектирането на хаотични синхронизационни схеми е популярна задача през последните години най-вече заради големия потенциал, който крият в себе си хаотичните системи при използването им за защита на информация [3,4]. Тук се включват както комуникационни системи за предаване на информация по жична, безжична връзка или през Интернет, така и различни системи за криптиране на текст, изображения и видео или за рандомизация на управляващите сигнали в индустриалните системи. При използването на хаотични синхронизационни схеми като основа за реализацията на такива системи е предимство, ако между управляващата и подчинената хаотични системи се реализира по-сложен тип синхронизация. Известна е т.н. изместена синхронизация [5], при която след края на преходния процес една част от функциите на разсъгласуване се установяват в константи, различни от нула, т.е. едната система система се движи синхронно на другата, но с константно изместване. По-слабо известна и от по-сложен тип е осцилиращата синхронизация [6]. При постигане на такава синхронизация част от функциите на разсъгласуване не се установяват в нула или в константа, а стават периодични функции и по този начин двете хаотични системи са в режим на сложна синхронизация помежду си. Известно е, че за да се получи такъв тип синхронизация Якубианът на системата от разсъгласуването между системите трябва да има двойка комплексно-спрегнати собствени стойности (условни показатели на Ляпунов) с нулева реална част.  
В доклада се предлага синтез на хаотична синхронизационна система между две идентични системи на Van der Pol посредством първоначална връзка между системите по нелинейния елемент, която гарантира получаване на линейна система от разсъгласуване и възможност за точно изчисляване на условните показатели на Ляпунов (УПЛ). На следващия етап след анализ на тази система се синтезира допълнителна връзка на принципа на метода за синхронизация с еднопосочно свързване с обратна връзка, чиято цел е да модифицира УПЛ до желания вид за получаване на осцилираща синхронизация. 
ИЗЛОЖЕНИЕ

Най-общо задачата за синхронизация между две хаотични системи с еднопосочна връзка между тях може да се представи с уравненията:
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където 
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 са векторите на състоянието на системите, p е вектор на параметрите, а функцията f е нелинейна. Системите (1) и (2) са идентични по структура и параметри. Системата (1) се нарича управляваща, а системата (2) – подчинена. Връзката между системите е еднопосочна от (1) към (2), т.е. променливи от първата система участват в управлението на втората. Управляващата функция u в общия случай съдържа променливи и от двете системи. Допълнително при някои методи за синхронизация на мястото на част от променливите на втората система се въвеждат променливи от първата, което води до модифицирания вид на функцията f в (2). 
Целта на хаотичната синхронизация е да се синтезира такова управление, че:
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е  векторът на разсъгласуването между двете хаотични системи, а 
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 е вектор с константи. При преобладаващата част от задачите за синхронизация тези константи се избират равни на нула, т.е. целта на управлението е двете системи да извършват идентични хаотични движения в пространството на състоянието. Такъв тип синхронизация се нарича идентична синхронизация. По-сложен тип синхронизация би се получил, ако част от константите във вектора 
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 са различни от нула. Такъв тип синхронизация се нарича изместена синхронизация. Още по-сложен тип синхронизация ще се получи, ако може да се синтезира такова управление към системата (2), че
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 е вектор с периодични функции 
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. Този тип синхронизация се нарича осцилираща синхронизация.

Осцилиращата синхронизация е слабо застъпена в публикациите за хаотична синхронизация. Не е известен стандартизиран подход за получаване на осцилираща хаотична синхронизация. В същото време сложния тип синхронизирана динамика на двете хаотични системи при осцилиращата синхронизация би я направил предпочитана в системите за хаотични комуникации. При тези системи има едно общо правило, че по-сложния тип синхронизация може да осигури по-висока степен на защита на информационните сигнали.

Има количествен показател, който за дадена хаотична синхронизационна схема може еднозначно да покаже какъв тип синхронизация ще се получи – идентична, изместена, осцилираща или няма да има синхронизация. Това са т.н. условни показатели на Ляпунов. Ако уравненията на системата (2) се извадят от тези на системата (1) се получава системата от разсъгласуването:
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Условните показатели на Ляпунов (УПЛ) са собствените стойности на Якубиана на линеаризираната система (6) в желаната точка, ако (6) е нелинейна система и съответно собствените стойности на матрицата на състоянието А на (6), ако управлението към (2) е така синтезирано, че (6) се е получила линейна система. Търси се такова управление към подчинената система (2), че:

- УПЛ да бъдат в лявата половина на комплексната равнина, ако искаме идентична синхронизация;

- максималният УПЛ да бъде равен на нула, ако искаме изместена синхронизация;
- да има двойка комплексно-спрегнати УПЛ с нулева реална част, а всички останали УПЛ да са в лявата половина на комплексната равнина, ако искаме осцилираща синхронизация.

Ако има поне един УПЛ в дясната половина на комплексната равнина, системите (1) и (2) няма да се синхронизират и функциите на разсъгласуване 
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 ще имат хаотичен характер като самите променливи 
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Нека за основа на хаотичната синхронизационна система с осцилираща синхронизация се избере непрекъснатия хаотичен модел от трети ред на Van der Pol [7], който е различен от много по-популярния модел на Van der Pol – Duffing. Уравненията на модела са:
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Номиналните стойности на параметрите на система са: 
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. Моделът на Van der Pol е симулиран в среда на MATLAB/Simulink с горните стойности на системните параметри и произволно избрани начални условия 
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. На фиг. 1 е показан полученият при симулацията хаотичен атрактор на системата в пространството на състоянието, а на фиг. 2 – времевите характеристики на променливите на състоянието.
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Фиг. 1. Хаотичен атрактор на системата на Van der Pol в пространството на състоянието
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Фиг. 2. Времеви характеристики на променливите на състоянието 
Равновесните точки на системата на Van der Pol се изчисляват, като се приравнят десните части на (7) на нула:
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Системата (8) има само едно решение: 
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, т.е. системата има една равновесна точка и това е координатното начало.

Якубианът на системата (7) е:
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Якубианът (9) при линеаризация на системата в равновесната точка 
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 и за номиналните стойности на системните параметри е:
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Собствените стойности на (10) са: 
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. Наличието на собствени стойности с положителна реална част показва, че равновесната точка 
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 е неустойчива. Всяка хаотична система трябва да притежава поне една неустойчива равновесна точка.
Ако системата (7) е управляващата система (1) в една хаотична синхронизационна схема, то подчинената хаотична система (2) трябва да има идентична структура и параметри. Първоначално подчинената система може да се синтезира с връзка между системите по нелинейния елемент директно в структурата й (частта 
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Подчертаната част в (11) показва управляващия сигнал от системата (7). При така синтезираната първоначална връзка системата от разсъгласуването (6) се получава линейна:
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Ако системата (12) се запише в пространството на състоянието във вида 
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[image: image35.wmf].

1

0

1

20

0

0

4

.

0

5

.

1

0

1

0

1

0

0

0

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

=

c

b

a

A

       (13)
Собствените стойности (УПЛ) на (13) са: 
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. Наличието на положителни УПЛ показва, че при тази първоначална схема на връзка между управляващата система (7) и подчинената система (11) необходимото условие за синхронизация не се изпълнява и дори двете системи да бъдат с много близки начални условия, тяхното движение ще е несинхронно. 
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Фиг. 3. Функции на разсъгласуване при схема (7)-(11) 
На фиг. 3 са показани функциите на разсъгласуване 
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, получени при симулацията на синхронизационната система с управляваща система (7) и подчинена система (11). Началните условия на първата система са 
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 Симулацията потвърждава липсата на синхронизация между двете хаотични системи. Нещо повече – динамиката на функциите 
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 от фиг. 2. Дори втората система да бъде с начални условия, много близки до тези на първата, например 
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Фиг. 4. Функции на разсъгласуване при схема (7)-(11) с много близки начални условия на двете системи
Съгласно условието за получаване на осцилираща синхронизация, такава би се получила, ако собствените стойности на матрицата А от (13) са от следния тип – двойка комплексно-спрегнати собствени стойности с нулева реална част и една отрицателна реална собствена стойност. Първоначално може да се направи анализ на матрицата А и да се провери дали при промяна на стойността на един от нейните елементи може да се получи желаната комбинация от типове собствени стойности. Ако бъде намерена такава модификация на матрицата А, получаването на така промененият й елемент може да се „осигури” в синхронизационната схема чрез синтез на подходящо управление 
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 към подчинената система, както е показано в (2). Подробният анализ на елементите на матрицата А води до намирането на такава комбинация от собствени стойности. Ако елементът 
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 се промени от -0.4 на 30, се получава модифицираната матрица 
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която има собствени стойности: 
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, отговарящи на условието за осцилираща синхронизация.
Промяната на елемента 
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 от -0.4 на 30 може да се осъществи, ако се промени синхронизационната схема (7) - (11) с въвеждане на допълнителен управляващ сигнал на принципа на метод за синхронизация с обратна връзка към първото уравнение на подчинената система: 
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т.е.:
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и избор на стойност на коефициента на обратната връзка 
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Системата от разсъгласуването (6) на новата синхронизационна схема (7) – (15) става:
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като за 
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 (14). На фиг. 5 са показани функциите на разсъгласуване 
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 получени при симулацията на синхронизационната схема (7) – (15). Вижда се, че те са периодични функции, с което поставената цел за получаване на осцилираща синхронизация е изпълнена. 
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Фиг. 5. Функции на разсъгласуване при схема (7)-(15) за k = -30.4 
Амплитудата на осцилациите е значително по-малка от интервала на изменение на отделните променливи 
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 от Фиг. 2, което може да се види при съвместно изобразяване на една графика на дадена двойка променливи от управляващата и подчинената системи. Например на фиг. 6 е показана съвместната динамика на 
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. Видимо и двете хаотични системи от синхронизационната схема запазват хаотичния си характер, но се движат синхронно и то така, че функциите има на разсъгласуване са тези от фиг.5. 

ЗАКЛЮЧЕНИЕ
Синтезирана е хаотична синхронизационна система между две идентични системи на Van der Pol, при която е получен сложен тип синхронно движение на двете системи, наречен осцилираща синхронизация. Осцилиращата синхронизация е по-слабо известна и няма общ подход за нейното получаване. Предложената синхронизационна схема комбинира връзка между управляващата и подчинената системи по нелинейния елемент, което води до линейна система от разсъгласуването и улеснява нейния анализ, и допълнителен управляващ сигнал към първото уравнение, който се изчислява така, че да гарантира получаването на нужната комбинация от условни показатели на Ляпунов за получаване на осцилираща синхронизация. 
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Фиг. 6. Съвместна динамика на променливите 
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