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Abstract
The paper represent how artificial neural network can be used for classification of cheese based on the type of milk used for its production. The experimental data are gathered via specially designed low-cost electronic nose incorporating gas sensor module.
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ВЪВЕДЕНИЕ

Използването на газови сензори за контрол на въздуха и качеството на околната среда става все по-разпространено. Това се дължи на непрекъснатия напредък в производството на нови видове и поколения газови сензори, както и в разработването на нови техники за обработка и класификация на данни. Освен за контрол на параметрите на въздуха, друго основно приложение на газовите сензори е мониторинг на качеството на храните.

За контрол на замърсяването на въздуха се използват различни методи за мониторинг на газовете [1]. В допълнение към скъпи аналитични уреди се използват и измервателни модули, базирани на газови сензори. Те имат ниска цена и позволяват постигане на бързи измервания [2]. Тъй като често вредните химически съставки във въздуха не могат да бъдат идентифицирани с помощта на един газов сензор, е необходимо да се използват множество сензори, комбинирани в съответния сензорен модул.

По отношение на качеството на хранителните продукти, потребителите имат нужда от обективна и точна оценка за това, какво купуват. Те трябва да получат информация и гаранция, че храните, които купуват, са произведени от посочените продукти и се съхраняват правилно от търговците (съгласно предписанията и изискванията на производителя и контролните органи). Не на последно място е важна възможността за точно откриване на замърсяване както в различните храни, така и в суровините, използвани за тяхното приготвяне. Това все повече налага разработването на бързи и акуратни методи и устройства, чрез които ще може да се определя качеството на различни хранителни продукти, както и да се определя изменението на състоянието им по време на тяхното съхранение. Едно от направленията в тази насока е използването на набор от газови сензори, обединени в т. нар. "Електронен нос". „Електронният нос“ дава възможност за бързо и точно  определяне на качеството на продуктите [3]. Използването на газови сензори е подходящо за тестване на различни хранителни продукти в твърдо или течно състояние. Те са подходящи за откриване например на добавено количество вода в млякото [4], както могат и да се използват и за откриване на млечни продукти, заразени с Escherichia coli [5], както и при следене на качеството на киселото мляко [6]. С помощта на газови сензори са правени и изследвания на замърсено овче мляко с токсини [7], които са канцерогенни и изключително опасни за човешкото здраве.

Резултатите, получени в тези изследвания, са особено показателни за възможностите на газовите сензори при използването им за класифициране на различни хранителни продукти.

Цел на настоящата работа е да представи класифицирането на различни типове сирена, посредством данни събрани с помощта на газови сензори и обработени с помощта на невронни мрежи.

ИЗЛОЖЕНИЕ

Събирането на данни се осъществява посредством специално разработен за целта сензорен модул. Разработеният модул използва газов сензор MICS-6814 [8]. Сензорът може да открива следните газове - въглероден оксид (CO), азотен диоксид (NO2), амоняк (NH3) (фиг.1).
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Фиг.1 Сензор MICS-6814
Данните от сензорния модул се събират с помощта на приложение, разработено на LabVIEW. Събираните данни се записват в Excel файлове и могат след това лесно да бъдат обработвани.
Изследвани са три типа сирене, като продължителността на всяко изследване е пет минути. Събрани са по 150 измервания за всеки тип сирене, като времето между две последователни измервания е 2 секунди. При стартиране на измерванията сензорите в MICS-6814 се нуждаят от известно време - около 90 секунди, за да се установят и да преминат в работен режим.

На фиг. 2 са представени резултатите от измерването на овче сирене. 
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Фиг.2 Измервания на овче сирене
На фиг. 3 са представени резултатите от измерването на краве сирене. 
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Фиг.3 Измервания на краве сирене
На фиг. 4 са представени резултатите от измерването на козе сирене. 
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Фиг.4 Измервания на козе сирене
От направените измервания са взети последните 50 точки от всяко и на тази база е създадена експерименталната извадка с реални данни (фиг.5), които се използват за обучение на изкуствена невронна мрежа (ИНМ).
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Фиг.5 Извадка с експериментално измерени данни
От разпределението на данните се вижда, че трите типа сирене са добре различими като класове. За класификация се използва невронна мрежа с два слоя- един скрит и един изходен (фиг.6). 

[image: image7]
Фиг.6 Структура на невронната мрежа
В скрития слой има 5 неврона с „tansig“ функция на трансфер, докато изходня слой се състои от три неврона със “softmax” функция на трансфер. Обучението на мрежата е извършено посредством „Scaled conjugate gradient - SCG“ алгоритъм с обратно разпространение на грешката. 
От входната обучваща извадка – 70% от данните се използват за обучение, 15% за валидиране на обучението и 15% за тестване на невронната мрежа след обучението.    При тестването на работата на мрежата, тестовата извадка се разпознава успешно на 100% (фиг. 7). 
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Фиг.7 Матрица на разпознаванията
Тъй като експерименталните данни, събрани за всеки тип сирене, са близки като стойности, то за проверка на работоспособността на обучената невронна мрежа се предлага използването на симулирани стойности, в които е добавен шум по случаен принцип. Като основа за генериране на симулираните данни се вземат средните стойности на показанията на отделните сензори на MICS-6814 за всеки един тип сирене. 
Средната стойност на показанията на сензорите се изчислява за всеки тип сирене по формулата:
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      (1)

където N -броят на осредняваните стойности на x. 

В табл.1 са представени средните стойности в mV на показанията на сензорите за различните типове сирена.
Табл.1Средни стойности
	Средни стойности в mV
	NO2
	NH3
	CO

	Овче сирене
	1470.812
	91.128
	127.788

	Краве сирене
	1883.56
	176.116
	217.332

	Козе сирене
	998.82
	72.104
	170.42


Добавеният шум се генерира на базата на стандартните отклонения в показанията на сензорите за всеки тип сирене. Стандартното отклонение се изчислява по формула (2) .
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        (2)

Резултатите за  стандартните отклонения са представени 
в табл.2.
Табл.2 Стандартни отклонения
	Стандартно 

Отклонение в mV
	NO2
	NH3
	CO

	Овче сирене
	12.93982
	2.339984
	2.568064

	Краве сирене
	3.770346
	5.082839
	10.24632

	Козе сирене
	8.385142
	3.37995
	5.098899


На база на получените стандартни отклонения и средните стойности за показанията, се генерират по 100 случайни показания за всеки тип сирене, симулиращи измервателни данни и чиито стандартни отклонения са пет пъти по-големи от тези на реалните измерени данни, представени по-горе в табл.2.  
Разпределението на симулираните данни в пространството, дефинирано от сензорите NO2, NH3 и CO е представено на фиг. 8.
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Фиг.8 Извадка със симулирани данни
На база на симулираните данни, изкуствената невронна мрежа генерира на изхода си класифициране на отделните входни данни към един от трите типа сирене. Независимо, че стандартното отклонение на симулираните данни е пет пъти по-голямо от това на реалните данни, с които е обучена невронната мрежа, то симулираните данни се разпознават и класифицират със 100%-ва точност (фиг.9).
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Фиг.9 Матрица на разпознаванията
Въз основа на това може да се заключи, че обучената невронна мрежа може да се използва успешно за класифициране на описаните сирена. 

Бъдещите изследвания ще бъдат съсредоточени в областта на събиране на данни от сирена от различни производители, така че освен разпознаване на типа на сиренето да може да бъде определен и неговият производител.
ЗАКЛЮЧЕНИЕ
В настоящата работа е представено използването на изкуствена невронна мрежа за класификация на три типа сирена въз основа на данни събрани с помощта на газов модул с използването на три газови сензора вградени в него. Изкуствената невронна мрежа е обучена и е тествана успешно както с реални, така и със симулирани данни, в които е добавен изкуствено генериран шум. 
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